Abstract

Hydration reactions on a carbonate-terminated cubic ZrO2(110) surface were analyzed using ab initio molecular dynamics (AIMD) simulations. After hydration reactions, carbonates were still present on the surface at 500 K. However, these carbonates are very weak conjugate bases and only act as steric hindrance in proton hopping processes between acidic chemisorbed H2O molecules (Zr-OH2) and monodentate hydroxyl groups (Zr-OH-). Similar to a carbonate-free hydrated surface, Zr-OH2, Zr-OH-, and polydentate hydroxyl groups ([double bond splayed left]OH+) were observed, while the ratio of acidic Zr-OH2 was significantly larger than that on the carbonate-free hydrated surface. A thermodynamic discussion and bond property analysis reveal that CO2 adsorption significantly decreases the basicity of surface oxide ions ([double bond splayed left]O), whereas the acidity of Zr-OH2 is not affected. As a result, protons released from [double bond splayed left]OH+ react with Zr-OH- to form Zr-OH2, leading to a deficiency of proton acceptor sites, which decreases the proton conductivity by the hopping mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.