Abstract

Enterococcus faecalis (E. faecalis), one of the main pathogens responsible for refractory periapical periodontitis and nosocomial infections, exhibits markedly higher pathogenicity in biofilms. Objectives Studies have shown that caseinolytic protease P (ClpP) is involved in biofilm formation. However, to date, few studies have investigated the role of ClpP in the survival of E. faecalis, and in enhancing biofilm formation. Therefore, we investigated the role of ClpP in the formation of E. faecalis biofilms.Methodology In our study, we used homologous recombination to construct clpP deleted and clpP complement strains of E. faecalis ATCC 29212. A viable colony counting method was used to analyze the growth patterns of E. faecalis. Crystal violet staining (CV) and confocal scanning laser microscopy (CLSM) were used to characterize biofilm mass formation and scanning electron microscopy (SEM) was used to observe the biofilm microstructure. Data was statistically analyzed via Student’s t-test or one-way analysis of variance (ANOVA).Results The results exhibited altered growth patterns for the clpP deletion strains and depleted polysaccharide matrix, resulting in reduced biofilm formation capacity compared to the standard strains. Moreover, ClpP was observed to increase biofilm formation in E. faecalis.Conclusion Our study shows that ClpP can increase biofilm formation in E. faecalis and emphasizes the importance of ClpP as a potential target against E. faecalis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.