Abstract
Abstract The sensitivity of tropical atmospheric hydrologic processes to cloud microphysics is investigated using the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM). Results show that a faster autoconversion rate leads to (a) enhanced deep convection in the climatological convective zones anchored to tropical land regions; (b) more warm rain, but less cloud over oceanic regions; and (c) an increased convective-to-stratiform rain ratio over the entire Tropics. Fewer clouds enhance longwave cooling and reduce shortwave heating in the upper troposphere, while more warm rain produces more condensation heating in the lower troposphere. This vertical differential heating destabilizes the tropical atmosphere, producing a positive feedback resulting in more rain and an enhanced atmospheric water cycle over the Tropics. The feedback is maintained via secondary circulations between convective tower and anvil regions (cold rain), and adjacent middle-to-low cloud (warm rain) regions. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the freezing–melting (0°C) level, with rising motion (relative to the vertical mean) in the warm rain region connected to sinking motion in the cold rain region. The upper cell is found above the 0°C level, with induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. It is that warm rain plays an important role in regulating the time scales of convective cycles, and in altering the tropical large-scale circulation through radiative–dynamic interactions. Reduced cloud–radiation feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden–Julian oscillations (MJOs). Conversely, a slower autoconversion rate, with increased cloud radiation produces MJOs with more realistic westward-propagating transients embedded in eastward-propagating supercloud clusters. The implications of the present results on climate change and water cycle dynamics research are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have