Abstract
AbstractColdwater fishes are sensitive to abiotic and biotic stream factors, which can be influenced by climate. Distributions of inland salmonids in North America have declined significantly, with many of the current strongholds located in small headwater systems that may serve as important refugia as climate change progresses. We investigated the effects of discharge, stream temperature, trout biomass, and food availability on summer growth of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, a species of concern with significant ecological value. Individual size, stream discharge, sample section biomass, and temperature were all associated with growth, but had differing effects on energy allocation. Stream discharge had a positive relationship with growth rates in length and mass; greater rates of prey delivery at higher discharges probably enabled trout to accumulate reserve tissues in addition to structural growth. Temperature effects were positive but not significant, and support in growth models was limited, likely due to the cold thermal regimes of the study area. The strength of the discharge effect on growth suggests that climate adaptation strategies for coldwater fishes that focus solely on thermal characteristics may be misleading and highlights the importance of considering multiple factors, including hydrologic regimes, in conservation planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.