Abstract

The response of ameloblasts to long-term (6 weeks) exposure to 100 ppm fluoride was examined in continuously erupting mandibular incisors of female Sprague-Dawley rats as compared to control rats receiving a similar diet (Teklad L-356) but no sodium fluoride in their drinking water. After treatment, animals from both groups were perfused intravascularly with glutaraldehyde, and the incisors were removed and processed for light microscope morphometric analyses directly from 1 microns thick Epon sections. Other animals were injected intravenously with calcein (green fluorescence) followed 4 hours later by xylenol orange (red fluorescence) in order to reveal smooth-ended ameloblast modulation bands and thereby allow quantification of parameters related to the creation and movement of modulation waves within the maturation zone of these teeth. The results indicated that rat incisors expressed four major changes in normal amelogenesis which could be attributed to the chronic fluoride treatment. First, ameloblasts produced a thinner than normal enamel layer by the time they completed the secretory stage and entered the maturation stage of amelogenesis. Second, enamel organ cells within the maturation zone, especially those from the papillary layer, were shorter in height than normal. Third, ameloblasts related to maturing enamel in areas where it was partially soluble and/or fully soluble in EDTA modulated at a rate that was much slower than normal. In some locations ameloblasts remained ruffle-ended for as much as 30% longer than normal per cycle. This upset the usual pattern such that fewer total modulation cycles were completed per unit time by these ameloblasts. Fourth, enamel proteins were lost from the maturing enamel layer at a rate that was about 40% slower than normal. The data suggested that ameloblasts detected the delay in the extracellular breakdown and/or loss of enamel proteins and they responded by remaining ruffle-ended for longer intervals than usual (positive feedback).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call