Abstract

A chronic diet of ethanol has detrimental effects on the cholinergic system in adult humans and rats. This study examined the effects of chronic exposure to dietary ethanol on the anatomical organization of true acetylcholinesterase (AChE) active elements in rat cerebral cortex. We focused on the somatosensory cortex because of its highly organized chemical and cellular structure. Following 42 days of exposure to an ethanol diet (6.7% v/v), there were marked changes in the cortical plexus of AChE-positive fibers. The AChE-positive plexus in ethanol-treated rats was reduced in all cortical layers, in comparison to age-matched pair-fed control and chow-fed rats. The most marked reduction was evident in layers II/III, IV, and VIa. Moreover, the density of AChE-positive cell bodies was significantly reduced in the cortices of ethanol-fed rats, particularly in the deep laminae. These alterations in the chemoarchitecture of somatosensory cortex occurred in the absence of changes in the cytoarchitectonic organization of neocortex. There was no detectable ethanol-induced change in the density of Cresyl violet-stained neurons either in the horizontal limb of the diagonal band of Broca or in the nucleus basalis. The density of AChE-positive neurons in the nucleus basalis, however, was significantly lower in ethanol-fed rats than in controls. Thus, it appears that a mere 6 weeks of ethanol exposure is sufficient to alter the cholinergic innervation of the cerebral cortex. These cortical alterations occur despite the lack of an ethanol-induced death of neurons in the basal forebrain. Such changes may contribute to the memory loss associated with alcohol dementia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.