Abstract
The aim of this study was to investigate the effects of choline supplementation on intramuscular fat (IMF) and lipid oxidation in IUGR pigs. Twelve normal body weight (NBW) and twelve intrauterine growth retardation (IUGR) newborn piglets were collected and distributed into 4 treatments (Normal: N, Normal+Choline: N+C, IUGR: I, and IUGR+Choline: I+C) with 6 piglets in each treatment. At 23 d of age, NBW and IUGR pigs were fed basal or choline supplemented diets. The results showed that the IUGR pigs had significantly lower (P<0.05) BW as compared with the NBW pigs at 23 d, 73 d, and 120 d of age, however, there was a slight decreased (P>0.05) in BW of IUGR pigs than the NBW pigs at 200 d. Compared with the NBW pigs, pH of meat longissimus dorsi muscle was significantly lower (P<0.05), and the meat color was improved in IUGR pigs. The malondialdehyde (MDA) levels were significantly decreased (P<0.05), while triglyceride (TG) and IMF contents were significantly higher (P<0.05) in the IUGR pigs than the NBW pigs. IUGR up-regulated the mRNA gene expression of fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC). Dietary choline significantly increased (P<0.05) the BW at 120d of age, however, significantly decreased (P<0.05) the TG and IMF contents in both IUGR and NBW pigs. FAS and sterol regulatory element-binding proteins 1 (SREBP1) mRNA gene expressions were increased (P<0.05) while the muscle-carnitine palmityl transferase (M-CPT) and peroxisome proliferators-activated receptorγ (PPARγ) mRNA (P<0.05) gene expressions were decreased in the muscles of the IUGR pigs by choline supplementation. Furthermore, choline supplementation significantly increased (P<0.05) the MDA content as well as the O2•¯ scavenging activity in meat of IUGR pigs. The results suggested that IUGR pigs showed a permanent stunting effect on the growth performance, increased fat deposition and oxidative stress in muscles. However, dietary supplementation of choline improved the fat deposition via enhancing the lipogenesis and reducing the lipolysis.
Highlights
Developmental plasticity defined the phenomenon by which one genotype can lead to a range of different physiological or morphological states in response to different environmental conditions during development
Previous studies suggested that the intrauterine growth retardation (IUGR) may affect skeletal muscle metabolism leading to more fat deposition [8], as fat accumulation correlated with systemic oxidative stress [9,10] and it may have a long-term impairment negatively affecting on meat quality [11]
Twelve normal body weight (NBW) and twelve IUGR of Landrace×Large White piglets were collected from 12 litters according to Xu [23] who defined IUGR piglets body weight is less than two standard deviations of the average weight of piglets
Summary
Developmental plasticity defined the phenomenon by which one genotype can lead to a range of different physiological or morphological states in response to different environmental conditions during development. This concept was introduced following epidemiological long-term studies in humans fed different diets in early life [1], especially in infants suffering from intra-uterine growth retardation [2]. Previous studies suggested that the IUGR may affect skeletal muscle metabolism leading to more fat deposition [8], as fat accumulation correlated with systemic oxidative stress [9,10] and it may have a long-term impairment negatively affecting on meat quality [11]. Puglianiello [12] found that the IUGR could increase the gene expressions related to lipolysis, resulted in the suffering from oxidative stress in the IUGR pigs, it is essential to suppress obesity in meat production in the IUGR pigs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.