Abstract

Chlorination of coastal (CS) and deep ocean (DO) seawater was accompanied by a prominent decrease (of up to 70%) of the intensity of its emission which was measured using a 315 nm excitation wavelength. Deconvolution of the emission spectra of CS and DO seawater showed that these spectra comprised three Gauss-shaped bands. The intensities of two of these bands decreased rapidly as the halogenation proceeded. For both DO and CS seawater, two stages of changes of their fluorescence were observed. The first stage in which the relative changes of the fluorescence intensity (ΔF/F) were between zero to 0.30 and 0.40 was not accompanied by the release of individual disinfection byproduct (DBP) species. For ΔF/F values above the corresponding thresholds, the relative changes of fluorescence intensity were well correlated with the concentrations of individual DBP species such as trihalomethanes and haloacetonitriles. R2 values for CHBr3, CHBr2Cl and CHBrCl2 formed in DO seawater were 0.83, 0.80 and 0.68, respectively while for CS seawater, the corresponding R2 values were 0.91, 0.93 and 0.92. The presented data demonstrate that the intrinsic chemistry of DBP formation and dissolved organic matter (DOM) halogenation in seawater can be well quantified based on the examination of changes of its fluorescence. This approach can also be employed for practical monitoring of changes of properties of marine DOM and generation of DBPs in desalination, marine aquaculture and other processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call