Abstract

The heterogeneity of dissolved organic matter (DOM) in natural and human impacted waters and the variety of drinking water treatment processes employed has made a mechanistic understanding of disinfection byproduct (DBP) formation challenging. In this study, we examined the formation of the regulated DBPs (Trichloromethanes, THM, and Haloacetic acids, HAA) during full-scale water treatment operations both with prechlorination treatment (normal operations for the drinking water plant) and without (altered operations); followed by coagulation, flocculation, filtration, and chlorination. The source water DOM concentration ranged 6.4 to 7.3 mg-C/L. DOM composition was moderately humic and degraded with a mix of microbial- and terrestrial-like characteristics. Removal of raw water prechlorination caused an average reduction in total THM and HAA concentrations of 52.7% and 40.0%, respectively, with the greater reduction noted for chlorinated-DBPs rather than brominated-DBPs. Prechlorination treatment resulted in a higher relative production of Cl3CH and BrCl2CH associated with aromatic, humic, and terrestrial-like DOM. Without prechlorination, the DBP pool had higher proportions of brominated-DBPs (Br3CH, Br2ClCH, Br2CHCOOH, BrClCHCOOH, and BrCH2COOH) associated with microbial-like, processed humic-like, and protein-like DOM. These observed patterns could not be explained by chloride demand and DOM concentration, indicating that DOM composition played an important role in DBP formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call