Abstract
The low electrical conductivity and the high surface defect density of the TiO2 electron transport layer (ETL) limit the quality of the following perovskite (PVK) layers and the power conversion efficiency (PCE) of corresponding perovskite solar cells (PSCs). Sulfur was reported as an effective element to passivate the TiO2 layer and improve the PCE of PSCs. In this work, we further investigate the effect of chemical valences of sulfur on the performance of TiO2/PVK interfaces, CsFAMA PVK layers, and solar cells using TiO2 ETL layers treated with Na2S, Na2S2O3, and Na2SO4, respectively. Experimental results show that the Na2S and Na2S2O3 interfacial layers can enlarge the grain size of PVK layers, reduce the defect density at the TiO2/PVK interface, and improve the device efficiency and stability. Meanwhile, the Na2SO4 interfacial layer leads to a smaller perovskite grain size and a slightly degraded TiO2/PVK interface and device performance. These results indicate that S2- can obviously improve the quality of TiO2 and PVK layers and TiO2/PVK interfaces, while SO42- has little effects, even negative effects, on PSCs. This work can deepen the understanding of the interaction between sulfur and the PVK layer and may inspire further progress in the surface passivation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.