Abstract
The aim of this study was to evaluate the effects of cellulase (CE) and lactic acid bacteria (LAB) on Caragana korshinskii silage by analyzing the fermentation parameters, chemical composition, and bacterial community. The Caragana korshinskii was harvested at the fruiting period and treated with cellulase and LAB alone as a control treatment with no additive (CK). The ensiling performance and bacterial community were determined after 3, 7, 15, 30, and 60 days of fermentation process. Compared with the CK group, the pH, dry matter loss, and ammonia nitrogen content were significantly (p < 0.05) decreased in the LAB and CE treatments. Compared with the CK and LAB group, the contents of acid detergent fiber, neutral detergent fiber, and acid detergent lignin in the CE group decreased significantly (p < 0.05), and the water-soluble carbohydrates, acetic acid, and lactic acid concentrations increased significantly (p < 0.05). At the genus level of microorganisms, the addition of cellulase and LAB significantly reduced the microbial diversity. Compared with the CK group (78.05%), the relative abundance of Lactiplantibacillus in the CE group (90.19%) and LAB group (88.40%) significantly (p < 0.05) increased. The relative abundance of Pediococcus in the CE group (3.66%) and LAB group (2.14%) was significantly (p < 0.05) lower than that in the CK group (14.73%). Predicted functional profiling of 16S rRNA genes revealed that the addition of cellulase and LAB increased the pyruvate metabolic pathway during Caragana korshinskii silage, thereby increasing the accumulation of lactic acid concentration. The addition of cellulase expressed a better advantage in the biosynthetic capacity of lysine. In summary, the addition of cellulase and LAB could adjust the bacterial community to improve the silage quality of Caragana korshinskii, and the addition of cellulase exhibited better results than the LAB additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.