Abstract

ZnAl2O4-Mg2TiO4-CaTiO3 ceramics were prepared by the solid-state reaction.The effects of CaTiO3 on phase compositions,microstructure and microwave dielectric properties were investigated.It shows that CaTiO3 can effectively improve the sinterability of the ceramics and lower the densification temperature by about 150℃.ZnAl2O4-based spinel,CaTiO3,MgTi2O5 and Zn2Ti3O8 phases are included in the ZnAl2O4-Mg2TiO4-CaTiO3 system,however,Zn2Ti3O8 phase disappears when the sintering temperature is higher than 1400℃.As CaTiO3 content increases,CaTiO3 phase in the sintered body raises while MgTi2O5 phase reduces.Furthermore,CaTiO3 can adjust obviously the temperature coefficient of resonant frequency of the(1-x)ZnAl2O4-xMg2TiO4(x=0.21) ceramics.When 6mol% CaTiO3 is added to the(1-x)ZnAl2O4-xMg2TiO4(x=0.21) system,a temperature-stable microwave dielectric ceramics sintered at 1400℃ with an er of 11.8,a Q·f of 88080GHz and a τf of-7.8×10-6/℃ can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.