Abstract

Single-stage microaerobic systems have been proven to be effective for concurrent removal of ammonium and organic carbon from sewage. While mechanistic models derived from activated sludge models (ASMs) have simulated nutrients removal under microaerobic conditions, classic ASMs exhibit limitations in capturing the intricate effects of carbon to nitrogen (C/N) ratio on nitrogen removal performance. To address this issue, a mechanistic model modified from the classic ASMs was proposed to capture the combined inhibitory effects of carbon and ammonium on microaerobic systems. This modified model was established based on experimental data from a single-stage microaerobic reactor encompassing simultaneous nitrification-denitrification and anammox processes. The inhibition coefficient of C/N ratio was integrated into the process rate equations, and its effectiveness was validated through model performance evaluation. Compared to the classic models, the modified one achieved superior predictions for nitrite and nitrate nitrogen concentrations. Simulations revealed that under optimized conditions with a C/N of 4.57 and a dissolved oxygen (DO) of 0.41 mg/L, the system could achieve up to 95.5% of total nitrogen (TN) removal efficiency. Based on the simulation of substrate uptake/production rate, increasing the nitrogen loading rate (NLR) rather than organic loading rate (OLR) was crucial for efficient nitrogen removal. The proposed modified model served as a valuable tool for designing and optimizing similar biological wastewater treatment systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call