Abstract

Bast fiber-reinforced polymer composites (BFRPs) are grabbing considerable research attention due to their assertive impact on the environment and excellence in biodegradability. Though BFRPs have excellent ecological performance factors, they also lack in some cases, such as lower mechanical, electrical, and thermal properties, due to the significant moisture absorption, minimal thermal stability, and inherent nature of bast fibers. BFRPs exhibit weaker fiber/matrix interfacial adhesion as compared to synthetic fiber-reinforced polymer composites, resulting in lower mechanical properties. Nowadays, a wide variety of fiber and matrix modification techniques are practiced improving the fiber-matrix interaction, which ultimately improves the mechanical properties. Among the fiber and matrix modification techniques, nanofiller integration is the most promising one. This study reviews the impacts of introducing carbon-based nanofillers, particularly graphene and carbon nanotubes (CNT), in diversified BFRPs. The influence of carbon-based nanofillers on the mechanical, electrical, and thermal behavior of BFRPs and their potential prospects are comprehensively reviewed. The paper concludes with the challenges and difficulties in composite processing, along with the techniques for overcoming them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call