Abstract

When caffeine evokes a contraction, and only then, crayfish muscle fibers become refractory to a second challenge with caffeine for up to 20 min in the standard saline (5 mM K(o)). However, the fibers still respond with contraction to an increase in K(o), though with diminished tension. Addition of Mn slows recovery, but the latter is greatly accelerated during exposure of the fiber to high K(o), or after a brief challenge with high K(o). Neither the depolarization induced by the K, nor the repolarization after its removal accounts for the acceleration, which occurs only if the challenge with K had itself activated the contractile system; acceleration is blocked when contractile responses to K are blocked by reducing the Ca in the bath or by adding Mn. Recovery is accelerated by redistribution of intracellular Cl and by trains of intracellularly applied depolarizing pulses, but not by hyperpolarization. The findings indicate that two sources of Ca can be mobilized to activate the contractile system. Caffeine mobilizes principally the Ca store of the SR. Depolarizations that are induced by high K(o), by transient efflux of Cl, or by intracellularly applied currents mobilize another source of Ca which is strongly dependent upon the entry of Ca from the bathing medium. The sequestering mechanism of the SR apparently can utilize this second source of Ca to replenish its own store so as to accelerate recovery of responsiveness to a new challenge with caffeine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.