Abstract

The effects of exogenously added Ca2+ on the enzymatic activity and structural stability of methanol dehydrogenase were studied for various Ca2+ concentrations. Methanol dehydrogenase activity increased significantly with increasing concentration of Ca2+, approaching saturation at 200 mM Ca2+. The effect of Ca2+ on the activation of MDH was time dependent and Ca2+ specific and was due to binding of the metal ions to the enzyme. Addition of increasing concentration of Ca2+ caused a decrease of the intrinsic tryptophan fluorescence intensity in a concentration-dependent manner to a minimum at 200 mM, but with no change in the fluorescence emission maximum wavelength or the CD spectra. The results revealed that the activation of methanol dehydrogenase by Ca2+ occurred concurrently with the conformational change. In addition, exogenously bound Ca2+ destabilized MDH. The potential biological significance of these results is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.