Abstract

To elucidate the types of voltage-dependent Ca(2+) channels controlling ACh and catecholamine releases in the in vivo adrenal medulla, we implanted microdialysis probes in the left adrenal medulla of anesthetized rats and investigated the effects of Ca(2+) channel antagonists on ACh, norepinephrine, and epinephrine releases induced by nerve stimulation. The dialysis probes were perfused with Ringer solution containing a cholinesterase inhibitor, neostigmine. The left splanchnic nerves were electrically stimulated at 2 and 4 Hz before and after intravenous administration of Ca(2+) channel antagonists. omega-Conotoxin GVIA (an N-type Ca(2+) channel antagonist, 10 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 40%, norepinephrine release at 4 Hz by approximately 50%, and epinephrine release at 2 and 4 Hz by approximately 45%. A fivefold higher dose of omega-conotoxin GVIA (50 microg/kg) did not further inhibit these releases. omega-Conotoxin MVIIC (a P/Q-type Ca(2+) channel antagonist, 50 microg/kg) inhibited ACh and epinephrine releases at 4 Hz by approximately 30%. Combined omega-conotoxin GVIA (50 microg/kg) and MVIIC (250 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 70% and norepinephrine and epinephrine releases at 2 and 4 Hz by approximately 80%. Nifedipine (an L-type Ca(2+) channel antagonist, 300 and 900 microg/kg) did not change ACh release at 2 and 4 Hz; however, nifedipine (300 microg/kg) inhibited epinephrine release at 4 Hz by 20%, and nifedipine (900 microg/kg) inhibited norepinephrine and epinephrine releases at 4 Hz by 30%. In conclusion, both N- and P/Q-type Ca(2+) channels control ACh release on preganglionic splanchnic nerve endings while L-type Ca(2+) channels do not. L-type Ca(2+) channels are involved in norepinephrine and epinephrine releases on chromaffin cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call