Abstract

The purpose of defibrillation is to rapidly restore blood flow and tissue perfusion following ventricular fibrillation (VF) and shock delivery. We tested the hypotheses that 1) a series of 1-ms pulses of various amplitudes delivered before the defibrillation shock can improve hemodynamics following the shock, and 2) this hemodynamic improvement is due to stimulation of cardiac or thoracic sympathetic nerves. Ten anesthetized pigs received a burst of either 15 or 30 1-ms pulses (0.1-10 A in strength) during VF, after which defibrillation was performed. ECG, arterial blood pressure, and left ventricular (LV) pressure were recorded. Defibrillation shocks and burst pulses were delivered from a right ventricular coil electrode to superior vena cava coil and left chest wall electrodes. Sympathetic blockade was induced with 1 mg/kg timolol and trials were repeated. The first half of this protocol was repeated in two animals that were pretreated with reserpine. Heart rate (HR) after 1-, 2-, 5-, and 10-A pulses was significantly higher than after control shocks without preceding pulse therapy. Mean and peak LV pressure measurements increased 38 and 72%, respectively, following shocks preceded by 5- and 10-A pulses compared with shocks preceded by no burst pulses. Mean and peak arterial pressures increased 36 and 43%, respectively, following shocks preceded by 5- and 10-A pulses compared with shocks preceded by no burst pulses. After beta-blockade, HR, mean and peak arterial pressures, and mean LV pressure were not significantly different after pulses of any strength compared with control shocks. LV peak pressure following the 10-A pulses was significantly higher than with no burst pulses but was significantly lower than the response to the 10-A pulses delivered without beta-blockade. HR, mean and peak arterial pressures, and mean and peak LV pressure responses after 15 or 30 5- or 10-A pulses were similar to the responses to the same pulses after beta-blockade. We conclude that a burst of 15-30 1-ms pulses delivered during VF can increase HR, arterial pressure, and LV pressure following defibrillation. beta-Blockade or reserpine pretreatment prevents most of this postshock increase in HR, arterial pressure, and LV pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.