Abstract
ABSTRACTA theoretical analysis of the atomic force microscopy (AFM) approach–retract dynamic interaction between an air bubble and a hydrophilic silica plane was carried out based on the well-established Stokes–Reynolds–Young–Laplace model. An air bubble with different radii attached to the end of a cantilever approached the silica surface with different approach velocities in a 10−3 M KCl solution. Results showed that with increasing approach velocity (0.1, 1, and 10 µm/s), the repulsive force, flattened area of the film, and hydrodynamic suction force between the 100-µm bubble and the silica plane increased. The film continued thinning at the initial stages of bubble retraction because of the attractive hydrodynamic pressure. When the bubble size decreased, the influence of hydrodynamic pressure was less evident. The final film thickness before bubble retraction was similar to the theoretical equilibrium thickness when the Laplace pressure was equal to the disjoining pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.