Abstract

Broflanilide exerted negative impacts on the gill of zebrafish. Thus, in this study, zebrafish gill was used to assess the apoptosis toxicity of broflanilide by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and apoptosis-related genes. The results found that the minimum threshold for the content and time of broflanilide affecting enzyme content and gene expression was 0.26mg/L after 24h exposure. After 96h exposure, broflanilide could cause apoptosis and exerted significantly increased contents of ROS and MDA, while inhibiting the activities of SOD, CAT, and GPx at 0.26 and 0.57mg/L. Broflanilide also had adverse effects on apoptosis-related genes, such as tumor protein p53 (p53), associated × (Bax), B-cell lymphama-2 (Bcl-2), caspase-3, caspase-9, and apoptotic protease activating factor-1(apaf-1), at 0.26mg/L and 0.57mg/L after 96h exposure, respectively. These results provide new insight into the potential toxicity mechanisms of broflanilide in zebrafish gills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call