Abstract
In elastohydrodynamic lubrication (EHL) contact, the film thickness strongly depends on boundary slips, including velocity slip and thermal slip at the solid–lubricant interface. In the EHL studies published thus far, velocity slip at the solid–lubricant interface has been investigated individually without considering thermal slip. In this study, the effects of both types of boundary slip on film thickness were investigated simultaneously in rolling/sliding contact. Numerical simulations were conducted based on the modified Reynolds equation and energy equation by considering boundary slips on the sliding surface. The results indicate that the velocity slip causes a reduction in film thickness under pure rolling contact, while a shifted surface dimple is formed along the sliding direction due to both velocity slip and thermal slip under zero entrainment velocity (ZEV) contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.