Abstract

The application of biochar to improve the quality of saline soils has attracted widespread attention. However, the impact of saline soil amendments with biochar prepared at different pyrolysis temperatures remains unclear. Therefore, we conducted a two-year (2022–2023) field experiment in the Hetao Irrigation District, China, to evaluate the effects of the biochar pyrolysis temperature (C1: 300 °C, C2: 500 °C, and C3: 700 °C) and application rate (T1: 10 t/ha and T2: 20 t/ha) on the soil quality and maize yield. The results indicated that (1) all biochar treatments significantly decreased the soil bulk density and increased the soil porosity; (2) treatment C3T1 significantly increased the soil moisture content and decreased soil salinity. The C3T2 treatment significantly increased the soil’s organic carbon content, and the soil’s available phosphorus content was greatest in the C1T2 treatment. (3) The maize yield increased linearly with the soil quality index (SQI), which was attributed mainly to improvements in the soil water–salt conditions and increases in the soil organic carbon content. In summary, biochar produced at high pyrolysis temperatures, when applied at a low application rate (C3T1), can result in high corn yields and improve saline soil quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call