Abstract

The effects of biochar-amended soils as landfill covers have been extensively studied in terms of liquid and gas permeability. However, the influences of biochar-amended soils on the performance of municipal solid wastes (MSWs) in bioreactor landfills have not been well understood. This paper investigates the potential application of biochar-amended soils as final and intermediate covers in landfills. The MSWs with biochar-amended soils as final and intermediate covers were recirculated with mature leachate in laboratory-scale bioreactors. The pH, chemical oxygen demand, ammonia and volatile fatty acids (VFAs) concentrations of leachates, mass reduction rates, settlement, methane, and total gas generations of MSWs were investigated. The results indicate that biochar-amended soils as intermediate landfill covers can provide pH-buffer capacity, increase the pH of leachate and decrease the accumulation of VFAs in the early stage of decomposition. The concentration of ammonia in the leachate with biochar-amended soils as intermediate cover is lower than that with natural soils. The application of biochar-amended soils as intermediate and/or final covers increases the biocompression ratios and settlement of MSWs. The application of biochar-amended soils as final cover slightly decreases the methane generation potential (L0). Biochar-amended soils as intermediate covers increase L0 by 10%, and biochar-amended soils as both intermediate and final covers enhance L0 by 25%. The increase in the ammonia removal, settlement, and methane yield indicates the viability of biochar-amended soils as intermediate landfill covers. Further studies can focus on the long-term behaviour of MSWs with soil covers with different biochar amendment rates and particle sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call