Abstract

The application of stabilised soil in agricultural construction works such as shallow foundation fills and subgrade material for farm roads is in demand due to the improved geotechnical properties. This study focused on improving the compressive capabilities and the permeability characteristics of rice husk ash (RHA)-treated clayey soils using basalt fibre. Basalt fibres are made from naturally occurring basalt rock, yet their use in soil stabilisation has not been realised due to limited research for its validation in ground stabilisation. Essential variables in the stabilised soil matrix included basalt fibre length (3 mm, 6 mm, and 12 mm), RHA percentages (5%, 10%, and 15%), and cement percentage (3%). In addition, the optimum moisture content of each admixture was determined by standard proctor compaction tests and reduced by 3% to prepare the specimens for unconfined compression strength test, constant head permeability test, and scanning electron microscope (SEM) test. It was observed that the unconfined compression strength of the RHA-basalt fibre stabilised clayey significantly increased when the specimens wet cure for 28 days. Similarly, adding fibres into the soil improved the permeability coefficient. The SEM test showed a porous morphology that increased permeability. Furthermore, through SEM, the randomly oriented basalt fibres’ portrayed the reinforcing phenomenon related to improved compressive strength and sufficient bearing capacity to support structures built upon this class of soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call