Abstract
The present thesis studies the effects of rice husk ash (RHA) as a pozzolanic admixture and the combination of RHA and ground granulated blast-furnace slag (GGBS) on properties of ultra-high performance concrete (UHPC). The ultimate purpose of this study is to replace completely silica fume (SF) and partially Portland cement by RHA and GGBS to achieve sustainable UHPC. To reach this aim, characteristics of RHA in dependence of grinding period, especially its pozzolanic reactivity in saturated Ca(OH)2 solution and in a cementitious system at a very low water binder ration (w/b) were assessed. The influences of RHA on compatibility between superplasticizer and binder, workability, compressive strength, shrinkage, internal relative humidity, microstructure and durability of UHPC were also evaluated. Furthermore, synergic effects of RHA and GGBS on the properties of UHPC were investigated to produce more sustainable UHPC. Finally, various heat treatments were applied to study the properties of UHPC under these conditions. All the characteristics of these UHPCs containing RHA were compared to those of mixtures containing SF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.