Abstract

We investigated whether supplementation with the barley line BARLEYmax (Tantangara; BM), which contains three fermentable fibers (fructan, β-glucan, and resistant starch), modifies the microbiota in cecal and distal colonic digesta in addition to short-chain fatty acids (SCFAs) production more favorably than supplementation with a high-β-glucan barley line (BG012; BG). Male Sprague–Dawley rats were randomly divided into 3 groups that were fed an AIN-93G-based diet that contained 5% fiber provided by cellulose (control), BM or BG. Four weeks after starting the respective diets, the animals were sacrificed and digesta from the cecum, proximal colon and distal colon were collected and the SCFA concentrations were quantified. Microbiota in the cecal and distal colonic digesta were analyzed by 16S rRNA sequencing. The concentrations of acetate and n-butyrate in cecal digesta were significantly higher in the BM and BG groups than in the control group, whereas the concentration of total SCFAs in cecal digesta was significantly higher only in the BM group than in the control group. The concentrations of acetate and total SCFAs in the distal colonic digesta were significantly higher only in the BM group than in the control group. The abundance of Bacteroidetes in cecal digesta was significantly higher in the BM group than in the control group. In contrast, the abundance of Firmicutes in cecal digesta was significantly lower in the BM and BG groups than in the control group. These results indicated that BM increased the concentration of total SCFAs in the distal colonic digesta. These changes might have been caused by fructan and resistant starch in addition to β-glucan. In conclusion, fermentable fibers in BM reached the distal colon and modified the microbiota, leading to an increase in the concentration of total SCFAs in the distal colonic digesta, more effectively compared with the high-β-glucan barley line (BG).

Highlights

  • Epidemiological studies have reported that the consumption of whole grain cereals may increase the bacterial fermentation of dietary fiber to short-chain fatty acids (SCFAs) which have anti-carcinogenic properties, and thereby reduce the risk of colonic disorders [1,2,3]

  • Food intake in the BM group was significantly lower than that in the control group, whereas there were no significant differences in food intake between the BG group and either of the other two groups

  • The weight of the cecal digesta was significantly higher in the BM group than in the BG and control groups

Read more

Summary

Introduction

Epidemiological studies have reported that the consumption of whole grain cereals may increase the bacterial fermentation of dietary fiber to short-chain fatty acids (SCFAs) which have anti-carcinogenic properties, and thereby reduce the risk of colonic disorders [1,2,3]. A recent systematic review concluded that high-fiber, whole grain cereals can improve bowel function [4]. A recent systematic review and meta-analysis concluded that fiber intervention has no significant effect on the α-diversity of gut microbiota [8]. This discrepancy might have been caused by the different sources of dietary fiber used by the studies included in the review

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call