Abstract

Genes encoding cry1Ab and cry1Ac δ-endotoxins from the bacterium, Bacillus thuringiensis (Bt) that have been incorporated in several crops to enhance their resistance to insect pests may possibly influence the activity and abundance of natural enemies of insect pests. The ladybird beetle, Cheilomenes sexmaculatus (L.) might ingest Bt toxins expressed by genetically modified plants by feeding on aphids, early instar larvae of lepidopterans, and other soft bodied insects feeding on transgenic plants. Therefore, we studied the effects of Cry1Ab and Cry1Ac Bt toxins on C. sexmaculatus under direct and indirect exposure conditions. For direct exposure, the neonate C. sexmaculatus larvae were fed either pure 2M sucrose (control) or sucrose solution containing Cry1Ab or Cry1Ac (0.1%), and on alternate days with aphids till pupation. Direct exposure of C. sexmaculatus larvae to Bt toxins resulted in reduced larval survival and adult emergence as compared to the controls, which might be due to long-term direct exposure. However, there were no adverse effects of the Bt toxins on C. sexmaculatus when the larvae were reared on Aphis craccivora Koch fed on different concentrations of Cry1Ab or Cry1Ac in the artificial diet. A significant and positive correlation was observed between the presence of Bt toxins in aphids, and coccinellid larvae and adults (r=0.53** to 0.86**). The results suggested that a direct exposure to Bt toxins expressed in transgenic plants or predation on H. armigera on Bt-transgenic plants will have little effect on the activity and abundance of the ladybird, C. sexmaculatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call