Abstract

This study is the first to investigate the changes in the composting process and carbon conversion in a cow manure–straw compost matrix with Bacillus subtilis added at four different levels (0, 0.5%, 1%, and 2% w/w compost), and to explain the mechanism responsible for carbon conversion through microbial functional metabolism. Inoculation with Bacillus subtilis at 2% had the best effect on fermentation among all treatments, but it inhibited the synthesis of total organic carbon and humus. Bacillus subtilis at 0.5% reduced mineralization in the cooling and maturity stages of composting, and enhanced the humification of carbon. The total organic carbon and humic sequence contents were significantly higher with Bacillus subtilis at 0.5% (12.5% and 20.2%, respectively) than Bacillus subtilis at 2% (P < 0.05). Redundancy analysis demonstrated that the pH and microbial functional metabolism were closely related to carbon sequestration during composting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.