Abstract

Asteroids that threaten Earth could be deflected from their orbits using laser directed energy or concentrated solar energy to vaporize the surface; the ejected plume would create a reaction thrust that pushes the object away from its collision course with Earth. One concern regarding directed energy deflection approaches is that asteroids rotate as they orbit the Sun. Asteroid rotation reduces the average thrust and changes the thrust vector imparting a time profile to the thrust. A directed energy system must deliver sufficient flux to evaporate surface material even when the asteroid is rotating. Required flux levels depend on surface material composition and albedo, thermal and bulk mechanical properties of the asteroid, and asteroid rotation rate. In the present work we present results of simulations for directed energy ejecta-plume asteroid threat mitigation. We use the observed distribution of asteroid rotational rates, along with a range of material and mechanical properties, as input to a thermal-physical model of plume generation. We calculate the expected thrust profile for rotating objects. Standoff directed energy schemes that deliver at least 10 MW/m<sup>2</sup> generate significant thrust for all but the highest conceivable rotation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.