Abstract

Data are presented for the 182 asteroids whose rotational properties are available in the literature. Plots are provided for the asteroid rotational frequency f and lightcurve amplitude Δm versus asteroid size; the latter is determined using standard methods if data are available but otherwise is estimated from asteroid albedos, selected depending on taxonomic type or orbital position. A linear least-squares fit to all the data shows that f increases with decreasing size, confirming McAdoo and Burns' (1973) result; this is demonstrated to be primarily caused by relatively more small non-C than C asteroids in our sample, coupled with a slower mean rotation rate for C asteroids ( P ≈ 11 hr) than non-C asteroids ( P ≈ 9 hr). In terms of the collisional theory of Harris (1979a), this means that the C's are less dense than the other minor planets. Any slight tendency for smaller asteroids to spin faster, even within a taxonomic type, could be due to selection effects; our data are not extensive enough to determine whether the very smallest (⪅ 10-km diameter) spin especially fast. The minor planets of our survey become more irregular at smaller sizes, disputing the conclusions of Bowell (1977b), Degewij (1977), and Degewij et al. (1978), based on other, perhaps more complete, data; selection effects may account for this disagreement. Shapes do not appear to depend on taxonomic type. The dispersion of asteroid rotation rates from the mean is found to be in excellent agreement with a three-dimensional Maxwellian distribution, such as would be developed in a collisionally evolved system. The rotation axes, therefore, appear to be randomly oriented in space. Rotation pole positions are also tabulated and calculated to likely be constant in space over the extent of past observation. Observers are encouraged to measure the rotational properties of faint objects and asteroids of unusual taxonomic types, and to carry out long-time studies of asteroids which over short periods do not seem to vary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call