Abstract

The objective of this research was to study the effect of astaxanthin (AST) on growth performance and antioxidant capacity in golden pompano (Trachinotus ovatus) both in vivo and in vitro. In the in vivo study, two diets were formulated with or without astaxanthin supplementation (D1 and D2; 0 and 200 mg/kg) to feed fish for 6 weeks. In the in vitro study, cells from hepatopancreas of golden pompano were isolated and four treatments with or without astaxanthin and H2O2 supplementation were applied (control group: without both astaxanthin and H2O2 treated; H2O2 group: just with H2O2 treated; H2O2 + AST group: with both astaxanthin and H2O2 treated; AST group: just with AST treated). Results of the in vivo study showed that weight gain (WG) and special growth rate (SGR) significantly increased with astaxanthin supplemented (P < 0.05). Feed conversion ratio (FCR) of fish fed D2 diet was significantly lower than that of fish fed D1 diet (P < 0.05). Hepatic total antioxidant capacity (T-AOC) and the reduced glutathione (GSH) of golden pompano fed D2 diet were significant higher than those of fish fed D1 diet (P < 0.05). Superoxide dismutase (SOD) was significantly declined as astaxanthin was supplemented (P < 0.05). Results of the in vitro study showed that the cell viability of H2O2 group was 52.37% compared to the control group, and it was significantly elevated to 84.18% by astaxanthin supplementation (H2O2 + AST group) (P < 0.05). The total antioxidant capacity (T-AOC) and the reduced glutathione (GSH) of cell were significant decreased by oxidative stress from H2O2 (P < 0.05), but it could be raised by astaxanthin supplementation (H2O2 vs H2O2 + AST), and the malondialdehyde (MDA) was significant higher in H2O2 group (P < 0.05) and astaxanthin supplementation could alleviate the cells from lipid peroxidation injury. In conclusion, dietary astaxanthin supplementation can improve the growth performance of golden pompano. Moreover, astaxanthin can improve the golden pompano hepatic antioxidant capacity both in vivo and in vitro study by eliminating the reactive oxygen species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call