Abstract

The current in vitro study aimed to assess the effects of ascorbic acid augmented albumin platelet-rich fibrin (AA Alb-PRF) on the wound healing activity of human gingival fibroblasts (HGFs) purported to be a regenerative biomaterial in surgical procedures. All assays were performed on three HGF groups, group I: complete media; group II: Alb-PRF, and group III: AA Alb- PRF. Alb-PRF was prepared following the protocol by Fujioka-Kobayashi et al. (2021). For preparation of AA Alb-PRF, 2,500 μg AA was added to the blood pre-centrifugation. All groups were subjected to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to estimate cell viability and proliferation, scratch assay for migration (0, 4, 12, and 24 hours) and transwell migration assay for chemotactic migration assessment (24 hours). Outcome variables were optical density (OD) for MTT assay, percentage of wound closure in scratch assay, and number of migrated cells in transwell migration assay. One-way ANOVA for MTT and transwell migration assays and two-way ANOVA for scratch assay with Bonferroni correction were performed with significance set at P<0.05. Cell viability and proliferation (OD: 0.684±0.003 and proliferation: 28%) and wound closure (49.92%±1.62% at 4 hours and 61.39%±0.88% at 12 hours) were significantly higher in group III, while group II demonstrated the maximum number of HGFs migrating across the transwell membrane (9.25±2.49) with P<0.05. HGFs demonstrated a significant increase in viability and proliferation along with rapid wound closure in the presence AA Alb-PRF compared to Alb-PRF alone, indicating additional beneficial effects of AA. Thus, AA Alb-PRF potentiates the wound healing activity of HGFs and could be employed in oral, maxillofacial, and periodontal surgeries as a regenerative biomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.