Abstract

Soil salinity is a common and serious environmental problem worldwide. Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators of soil salinity tolerance in plants. However, few studies have addressed the possible benefits of AMF inoculation for medicinal plants under saline conditions. In this study, we examined the effects of colonization with two AMF, Funneliformis mosseae and Diversispora versiformis, alone and in combination, on the growth and nutrient uptake of the medicinal plant Chrysanthemum morifolium (Hangbaiju) in a greenhouse salt stress experiment. After 6 weeks of a non-saline pretreatment, Hangbaiju plants with and without AMF were grown for five months under salinity levels that were achieved using 0, 50 and 200 mM NaCl. Root length, shoot and root dry weight, total dry weight, and root N concentration were higher in the mycorrhizal plants than in the non-mycorrhizal plants under conditions of moderate salinity, especially with D. versiformis colonization. As salinity increased, mycorrhizal colonization and mycorrhizal dependence decreased. The enhancement of root N uptake is probably the main mechanism underlying salt tolerance in mycorrhizal plants. These results suggest that the symbiotic associations between the fungus D. versiformis and C. morifolium plants may be useful in biotechnological practice.

Highlights

  • Salinity is a serious environmental problem, and over 800 million hectares of the land surface worldwide are affected by excessive salt [1,2]

  • Except for the non-saline condition, there were no significant differences in the percentages of total mycorrhizal colonization and arbuscule colonization for the Hangbaiju plants inoculated with different fungal species (Table 1)

  • Except for the root/shoot ratio, the growth parameters of the plants were significantly affected by salt; except for the root length and root dry weight, the growth parameters were significantly affected by Arbuscular mycorrhizal fungi (AMF)

Read more

Summary

Introduction

Salinity is a serious environmental problem, and over 800 million hectares of the land surface worldwide are affected by excessive salt [1,2]. Saline soil in China covers approximately 34.6 million hectares, mainly distributed in northern China and the areas along the Changjiang River [3]. In addition to natural causes such as high salinity precipitation and weathering of native rocks, irrigation with poor-quality water, land clearing, low levels of precipitation, high temperatures and over-exploitation of available water resources have exacerbated the increasing salinity levels in soils in many parts of the world [4,5,6,7]. Effects of AM fungi and salt stress on Chrysanthemum morifolium and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.