Abstract

We have studied the evolution of the magnetic, electronic, and structural properties of annealed epilayers of Ga1−xMnxAs grown by low temperature molecular beam epitaxy. Annealing at the optimal temperature of 250 °C for less than 2 h significantly enhances the conductivity and ferromagnetism, but continuing the annealing for longer times suppresses both. These data indicate that such annealing induces the defects in Ga1−xMnxAs to evolve through at least two different processes, and they point to a complex interplay between the different defects and ferromagnetism in this material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.