Abstract

Based on the compact density matrix formalism and the effective mass approximation, optical rectification of a disk-like quantum dot in the presence of impurity has been studied, in this work. The effects of applied magnetics and electric fields and its direction on the optical rectification of an elliptic anisotropic quantum dot are analyzed in details. Our results show that the optical rectification is strongly affected by the anisotropy degree and the direction of the electric field. Also, we found that the binding energies of on-center impurity can be tuned with direction of electric field and anisotropy degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.