Abstract
An inclined rod is installed upstream of a circular cylinder mounted on a flat plate to mitigate the horseshoe vortices in the junction flow. Smoke-wire visualization, hot-wire velocity measurement and surface pressure measurement are employed to study the effects of the inclined rod on the laminar and turbulent junction flows. The results show a properly placed inclined rod can significantly weaken the horseshoe vortices in front of the cylinder, depress the unsteady oscillation of the vortex system, change the separation position on the flat plate and narrow the wake of the cylinder. The inclined rod method provides a promising way to suppress the horseshoe vortices in the junction flow because of its effectiveness and its easiness to implement and adjust to fit different flow conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have