Abstract

A magnetic device which enables the application of a strong and uniform magnetic field to thin film during sputtering was designed for controlling the magnetic anisotropy using a three dimensional finite element method, and the effects of the external magnetic field on the magnetic properties of sputtered thin films were investigated. Both the intensity and the uniformity of the magnetic flux density in the sputter zone (50 mm ×50 mm) was dependent on not only the shape and size of the magnet device but also the magnitude of stray fields from the magnet. For the magnet device in which the distance between two magnets or two pure iron bars was 80-90 mm, the magnetic flux density along the direction normal to the external magnetic field direction was minimum. The two row magnets increased the magnetic flux density and uniformity along the external magnetic field direction. An Fe thin film sputtered using the optimized magnet device showed a higher remanence ratio than that fabricated under no external magnetic field. (Received September 15, 2010)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.