Abstract

Simple SummaryThis study highlights the positive effect of an Aloe arborescens Mill. whole plant homogenate on the liver and renal function of dairy cows during the peripartum period. Such positive effects could depend on both anti-hyperlipidemic and anti-inflammatory effects of Aloe that could have mitigated hepatic stresses that typically occur in early lactation. Our findings suggest Aloe arborescens supplementation to be an effective strategy to ameliorate adverse metabolic conditions in transition cows, indicating it as a preventive nutraceutical strategy against metabolic disorders.The anti-hyperlipidemic and anti-inflammatory effects exerted by Aloe on monogastric mammals suggest it as a potential strategy to address the tremendous metabolic alterations that affect dairy cows during their transition to calving. A group of 20 multiparous Italian Holstein dairy cows were housed in freestalls and allocated into two homogeneous groups to receive either 200 g/d of water (CTR) or 200 g/day of Aloe arborescens Mill. whole plant homogenate through a rumen tube (AAM) between −14 and 14 days from calving (DFC). From −14 to 35 DFC, the BCS, and milk yield were measured, and blood samples were collected to assess the hematochemical profile. Data underwent ANOVA testing using a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Compared to CTR cows, AAM cows had a less pronounced BCS loss in early lactation (p < 0.01), indicating less mobilization of body reserves. Compared to CTR cows, AAM cows had a lower plasma concentration of nonesterified fatty acids and beta hydroxybutyrate (p < 0.01 and = 0.01 respectively) that, paired with the lower butterfat content and fat/protein ratio in their milk (p = 0.03 and < 0.01 respectively), indicates that Aloe reduced the mobilization of body fats. AAM cows had a reduced concentration of myeloperoxidase in plasma and a lower SCC in milk compared to CTR cows (p = 0.02 for both), indicating an anti-inflammatory effect of Aloe. Furthermore, AAM cows had a lower plasma concentration of ceruloplasmin (p < 0.05) and higher plasma concentration of cholesterol, retinol, and paraoxonase compared to CTR cows (p < 0.01, < 0.01 and < 0.05 respectively), indicating Aloe was effective in mitigating the acute phase response in early lactation. Finally, AAM cows had lower plasma creatinine concentrations around calving (p < 0.05), a lower concentration of plasma bilirubin, and a higher concentration of plasma tocopherol compared to CTR cows (p = 0.01 for both). These data suggest Aloe has anti-hyperlipidemic and anti-inflammatory effects on transition dairy cows that could have ameliorated liver and kidney function disruption and increased the availability of body antioxidants in early lactation.

Highlights

  • The transition period (TP) is the most critical phase of a dairy cow’s life [1,2]

  • A TRT × time interaction was observed for the butterfat, fat output and fat/protein ratio (p = 0.01, p = 0.03 and p < 0.01, respectively), with AAM cows having the lowest values at 7 days from calving (DFC) (p < 0.01)

  • Obtained in murine models and using Aloe barbadensis instead of Aloe arborescens, these anti-hyperlipidemic effects observed against diabetes and polycystic ovary syndrome–related dyslipidemia suggests that the reduced NEFA concentration in the blood of our early lactating cows could depend on the effectiveness of whole plant homogenate (WPH) in managing body fat mobilization

Read more

Summary

Introduction

The transition period (TP) is the most critical phase of a dairy cow’s life [1,2]. Alterations in energy metabolism in this phase lead to a massive mobilization of lipid resources [3] that is often accompanied by systemic inflammation [4,5]. Similar experiments performed on diabetic rats [22] found Aloe to exert anti-diabetic effects by improving plasma insulin and reducing blood glucose concentration in fasting conditions and to manage dyslipidemia by restoring normal levels of lipoproteins and normal fatty acid composition in the liver and kidney. Other studies confirmed such an anti-hyperlipidemic effect [23] and found Aloe to reduce lipid peroxidation, inducing regenerative histological changes in the liver and kidney of diabetic rats [24]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.