Abstract

Loss of cardioprotection by adenosine in hearts stressed by transient ischemia may be due to its effects on glucose metabolism. In the absence of transient ischemia, adenosine inhibits glycolysis, whereas it accelerates glycolysis after transient ischemia. Inasmuch as 5'-AMP-activated protein kinase (AMPK) is implicated as a regulator of glucose and fatty acid utilization, this study determined whether a differential alteration of AMPK activity contributes to acceleration of glycolysis by adenosine in hearts stressed by transient ischemia. Studies were performed in working rat hearts perfused aerobically under normal conditions or after transient ischemia (two 10-min periods of ischemia followed by 5 min of reperfusion). LV work was not affected by adenosine. AMPK phosphorylation was not affected by transient ischemia; however, phosphorylation and activity were increased nine- and threefold, respectively, by adenosine in stressed hearts. Phosphorylation of acetyl-CoA carboxylase and rates of palmitate oxidation were unaltered. Glycolysis and calculated proton production were increased 1.8- and 1.7-fold, respectively, in hearts with elevated AMPK activity. Elevated AMPK activity was associated with inhibition of glycogen synthesis and unchanged rates of glucose uptake and glycogenolysis. Phentolamine, an alpha-adrenoceptor antagonist, which prevents adenosine-induced activation of glycolysis in stressed hearts, prevented AMPK phosphorylation. These data demonstrate that adenosine-induced activation of AMPK after transient ischemia is not sufficient to alter palmitate oxidation or glucose uptake. Rather, activation of AMPK alters partitioning of glucose away from glycogen synthesis; the increase in glycolysis may in part contribute to loss of adenosine-induced cardioprotection in hearts subjected to transient ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call