Abstract
In this study, a simple and portable electrochemical sensor based on laser-induced graphene (LIG) has been developed to systematically investigate the feasibility of LIG as an electrode to detect organophosphorus pesticides (OPs). It proves that the LIG-based electrode has a relatively high electrochemically active surface area (ECSA) and heterogeneous electron transfer (HET) of 0.100 cm2 and 0.000825 cm s-1, respectively. In addition, zirconium dioxide nanoparticles (ZrO2 NPs) have been modified on the electrode with three different binders, β-cyclodextrin (β-CD), chitosan (CS) and Nafion, to improve the adsorption capacity of the electrode toward OPs, and the effect of the binders on the performance of the as-fabricated sensor has been investigated in detail. The results show that β-CD increases not only the electrochemically active surface area of the electrode but also the redox peak current of methyl parathion (MP). To evaluate the sensitivity of the sensor, differential pulse voltammetry (DPV) curves have been tested in solutions containing different concentrations of MP using ZrO2-β-CD/LIG as an electrode, which shows a detection range of 5-200 ng ml-1 and a detection limit of 0.89 ng ml-1. In summary, the LIG-based sensor has a low detection limit, high sensitivity and good interference resistance, and thus has tremendous potential for the detection of pesticides in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.