Abstract

To enhance the performance (i.e., mechanical properties and ionic conductivity) of pore-filling polymer electrolytes, titanium dioxide (TiO 2) nanoparticles are added to both a porous membrane and its included viscous electrolyte, poly(ethylene oxide- co-ethylene carbonate) copolymer (P(EO-EC)). A porous membrane with 10 wt.% TiO 2 shows better performance (e.g., homogeneous distribution, high uptake, and good mechanical properties) than the others studied and is therefore chosen as the matrix to prepare polymer electrolytes. A maximum conductivity of 5.1 × 10 −5 S cm −1 at 25 °C is obtained for a polymer electrolyte containing 1.5 wt.% TiO 2 in a viscous electrolyte, compared with 3.2 × 10 −5 S cm −1 for a polymer electrolyte without TiO 2. The glass transition temperature, T g is lowered by the addition of TiO 2 (up to 1.5 wt.% in a viscous electrolyte) due to interaction between P(EO-EC) and TiO 2, which weakens the interaction between oxide groups of the P(EO-EC) and lithium cations. The overall results indicate that the sample prepared with 10 wt.% TiO 2 for a porous membrane and 1.5 wt.% TiO 2 for a viscous electrolyte is a promising polymer electrolyte for rechargeable lithium batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.