Abstract
Background: Dysregulation of matrix metalloproteinases (MMPs) activity is considered one of the potential causes of vascular complications in diabetic patients. Since training volume may influence MMPs levels in varying ways, the aim of our study was to evaluate changes in MMPs levels following acute maximum-intensity exercise in male patients with type 1 diabetes mellitus (T1DM). Methods: This study included 24 male T1DM patients and 10 healthy controls. Aerobic capacity was evaluated with a treadmill test. Levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were measured both before the aerobic capacity test and 60 min after its completion utilizing enzyme-linked immunosorbent assay (ELISA) system kits. Results: Before the aerobic capacity test only, MMP-9 serum levels were significantly elevated in the T1DM group compared to the controls. Following maximum-intensity exercise, the levels of MMP-2, MMP-9, and TIMP-1 were significantly higher in T1DM patients than in the control group. Between-group comparisons revealed that maximum-intensity exercise induced a statistically significant increase in MMP-2 serum levels from baseline in T1DM patients compared to controls. Conclusions: Our findings suggest that high-intensity exercise in T1DM patients leads to dysregulation of MMPs, as manifested by a significant increase in MMP-2 levels. This dysregulation may play a role in the development of vascular complications in diabetic patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.