Abstract

The use of active carbons for the removal of toxic organic compounds, for example from air or smoke, is of significant interest. In this paper, the equilibrium and dynamic adsorption characteristics of two active carbons are explored; one microporous coconut based and the other micro-mesoporous derived from a synthetic resin. Benzene, acetaldehyde and acrylonitrile were chosen as the probe toxicant vapours and adsorption was measured at a temperature of 298 K. The nitrogen equilibrium data (at 77 K), analysed using the BET, Dubinin-Radushkevich equations and DFT models, showed a higher overall adsorption capacity, more supermicroporosity and a higher proportion of pores wider than 2 nm for the synthetic resin based material. A micropore distribution biased toward the ultramicropore width-range was observed for the nutshell material. As a consequence, the characteristic adsorption energies in micropores are higher for the nutshell material than the resin based carbon. The effect of these different pore size characteristics on the adsorption kinetics, obtained by fitting the data to the linear driving force (LDF) model, is that the resulting adsorption rate constants are higher across much of the relative pressure range (p/p s) studied for the resin based carbon compared to the nutshell material. Significantly, the wider pores of the resin-based carbon result in higher rates of adsorption in the micropore filling domain. When evaluated under dynamic conditions in cigarette smoke, improved toxicant removal was observed using the resin based carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.