Abstract
Moderate acoustic trauma results in decreased cochlear sensitivity and frequency selectivity. This decrease is believed to be caused by damage to the cochlear amplifier that is associated with outer hair cells (OHCs) and their nonlinear electromechanical characteristics. A consequence of OHC nonlinearity is the acoustic enhancement effect, in which low-frequency electrically evoked otoacoustic emissions are enhanced by a simultaneous tone. The present study found that acoustic trauma reduced the acoustic enhancement effect and this reduction is correlated with the N1 threshold at the electrode site. This result is consistent with the theory that trauma affects the mechanoelectric transduction process, thus affecting cochlear mechanical nonlinearity. Acoustic trauma also reduced the cochlear microphonic in a way that suggests that the number of functioning tension-gated channels and the stiffness of the gating springs were decreased. In some cases, the electromechanical transduction process was also found to be affected by acoustic trauma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.