Abstract

Atlantic salmon, Salmo salar, smolts of hatchery origin were held for 5 to 16 days in ambient (pH 6.35, labile Al = 60 µg L−1), limed (pH 6.72, labile Al = 58.4 µg L−1), or acidified (pH 5.47, labile Al=96 µg L−1) water from the Narraguagus River in Maine, USA. Wild smolts were captured in the same river in rotary traps and held for up to two days in ambient river water. Osmoregulatory ability was assessed by measuring Na+/K+ ATPase activity, hematocrit, and blood Cl concentration in freshwater, and after 24-hr exposure to seawater. Hatchery smolts exposed to acidic water and wild smolts displayed sub-lethal ionoregulatory stress both in fresh and seawater, with mortalities of wild smolts in seawater. Using ultrasonic telemetry, hatchery-reared ambient and acid-exposed, and wild smolts were tracked as they migrated through freshwater and estuarine sections of the river. The proportion of wild smolts migrating during daylight hours was higher than for hatchery-reared smolts. Wild smolts remained in the freshwater portions of the river longer than either group of hatchery smolts, although survival during migration to seawater was similar for all three treatments. Acid-exposed hatchery-origin and wild Narraguagus River smolts were both under ionoregulatory stress that may have affected their migratory behavior, but not their survival for the time and area in which we tracked them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.