Abstract

Reactive magnesia (MgO)-activated ground granulated blast furnace slag (GGBS) is a newly developed binder for soil stabilization/solidification. It can be used as an alternative of conventional hydraulic binders for the stabilization/solidification of heavy metal-contaminated soils. Acid rain exposure has been found to weaken the heavy metal immobilization in solidified/stabilized soils in the long term. However, very limited studies have been conducted to investigate the effect of acid rain on the physical and strength properties of GGBS–MgO-stabilized heavy metal-contaminated soils. In this study, GGBS–MgO-stabilized lead (Pb)-contaminated soils are subjected to the semi-dynamic leaching test using the simulated acid rain (SAR) as leachant, which has pH values of 2.0, 3.0, 4.0, and 5.0. Deionized water (pH 7.0) is also used for comparison. Dry density, soil pH, needle penetration depth, and unconfined compressive strength (qu) of the solidified/stabilized soils are measured after the leaching test. The results show that exposure to SAR yields reduction in qu and soil pH, whereas the needle penetration depth increases and dry density changes only marginally. The qu of the solidified/stabilized soils increases noticeably with increased GGBS–MgO content. It is also found that the stabilized Pb-contaminated soil exhibits lower qu than its clean soil counterpart. Furthermore, a quantitative relationship is proposed to correlate the normalized needle penetration resistance with the normalized qu. Finally, a multiple linear regression is performed to statistically reveal the dependence of soil strength on three independent variables, which are SAR pH, Pb concentration and binder content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.