Abstract
Experimental plots within the Hubbard Brook Experimental Forest, NH, were treated with sodium trifluoroacetate (TFA) and lithium bromide (Br), to study the impact of TFA alone and in the presence of increased anion concentrations (e.g. acid deposition) on the soil solution chemistry of a northern hardwood forest soil. Trifluoroacetate is a major atmospheric degradation product of replacement compounds of chlorofluorocarbons (CFC) and Br is widely used as a hydrologic tracer. Calculated drainage losses via soil water flow were less than 60% of inputs, added during the summer, and TFA and Br were temporarily retained in the soil until fall. The initial indication of an acid input of the treatments (HTFA, HBr) in the Bs2 horizon, which reflects stream water chemistry as well, was an increase of base cations in the soil solution, decreasing the soil's acid neutralizing capacity. Thereafter, trifluoroacetate and Br concentrations peaked after the peak in base cations, synchronous with peaks in H+ and Al concentrations. Organic anions, nitrate and chloride played the major role in accompaning base cations out of the solum. Sulfate retention at soil adsorption sites was increased by the presence of TFA and Br, reducing its role as a mobile anion of base cations in this experiment. Relative retention of anions for the whole profile of this northern hardwood forest soil was estimated by correlation analyses and input-output balances in decreasing order on an equivalant basis: SO4 > TFA = Br ≥ Cl > NO3 > organic anions. Recovery from acid additions were recorded within several weeks after the treatments were stopped. Evaluating the impact of added chemical compounds to soils must be considered within the context of linkages among element cycles and pools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.