Abstract

The effects of direct application of acetylcholine (ACh) and m- and n-cholinoreceptor blockers on test cells were investigated in waking cats having developed instrumental lever-pressing conditioned reflex. Changes were recorded in both spontaneous and invoked firing activity in a functionally homogeneous group of motor cortex cells, in which increased discharge rate usually preceded the start of conditioned reflex movements. It was found, however, that ACh increased spontaneous activity considerably in some of the neurons tested and reduced it moderately in others. Atropine sharply reduced background activity in cortical neurons while preserving spike response to presentation of a conditioned stimulus and n-cholino-blockers such as hexonium and (occasionally) tubocurarine inhibited spike response produced by conditioned stimuli; background activity was slightly inhibited by hexonium and reinforced by tubocurarine. It was concluded that ACh put out by cholinergic fibers helps to maintain background firing activity level in cortical neurons under naturally occurring conditions, acting via m-cholinoreceptors, whereas factors influencing generation of spike discharges associated with performance of conditioned reflex movements are mediated by n-cholinoreceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.