Abstract

The application of in-house transient wave-body interaction ITU-WAVE computational tool is extended to predict the wave power absorption with Wave Energy Converters (WECs) arrays in front of a vertical wall using time dependent boundary integral equation method. The vertical wall effect is taken into account with method of images which considers the perfect reflection of incident waves from a vertical wall. The effects of separation distance between WECs as well as a vertical wall and WECs, and heading angles are studied to predict wave power absorption, mean and individual interaction factors which determine the performances of WECs arrays. The numerical results of WECs arrays in front of vertical wall show that both radiation and exciting force parameters are quite different from those of without a vertical wall. The numerical investigations also demonstrate that wave power absorption with an array system in front of a vertical wall are significantly greater than those of without a vertical wall. This is due to nearly trapped and standing waves between a vertical wall and WECs. The prediction of hydrodynamic parameters in front of a vertical wall with present ITU-WAVE are validated against other published numerical, analytical, and experimental results which show satisfactory agreements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call