Abstract

Following antimicrobial administrations in oral environments, bacteria become exposed to a sub-minimum inhibitory concentration (sub-MIC), which can induce in vitro single-species biofilms. This study explored the effects of chlorhexidine gluconate (CHG) at a sub-MIC on in vitro multi-species biofilms comprising Streptococcus mutans, Streptococcus oralis and Actinomyces naeslundii. CHG at a sub-MIC was found to induce in vitro biofilm growth, although the bacterial growth was not significantly different from that in the control. The gene transcription related to S. mutans multi-species biofilm formation with CHG at a sub-MIC was significantly higher than that of the control, but this was not found in S. mutans single-species biofilms. The bio-volume of extracellular polysaccharides with CHG at a sub-MIC was significantly higher than that of the control. This suggests that CHG at a sub-MIC may promote the development of multi-species biofilms by affecting the gene transcription related to S. mutans biofilm formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.